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Risk is one of the important parameters in portfolio optimization problem.  Since the introduction of 
the mean-variance model, variance has become the most common risk measure used by practitioners 
and researchers in portfolio optimization.  However, the mean-variance model relies strictly on the 
assumptions that assets returns are multivariate normally distributed or investors have a quadratic utility 
function. Many studies have proposed different risk measures to overcome the drawbacks of variance. 
The purpose of this paper is to discuss and compare the portfolio compositions and performances 
of four different portfolio optimization models employing different risk measures, specifically the 
variance, absolute deviation, minimax and semi-variance. Results of this study show that the minimax 
model outperforms the other models. The minimax model is appropriate for investors who have a strong 
downside risk aversion.
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Introduction

Since the introduction of Markowitz (1952) Mean-Variance (MV) model, variance has become the 
most common risk measure in portfolio optimization. However, this model relies strictly on the 
assumptions that the returns of assets are multivariate normally distributed or investor’s utility 
function is quadratic. Nonetheless, in practice these two assumptions do not hold. Many studies 
such as Brooks and Kat (2002) show that returns from hedge funds are not normally distributed. 
According to Pratt (1964), quadratic function is very unlikely because it implies increasing absolute 
risk aversion. Thus, to overcome the limitations of MV model, alternative risk measures such 
as Mean Absolute Deviation (MAD), minimax (MM) and lower partial moment (LPM) have 
been proposed. Thus, the objective of this paper is to compare the portfolio compositions and 
performances of four portfolio optimization models specifically the variance, absolute deviation, 
minimax and semi-variance as risk measures.
The rest of the paper is structured as follows. The next section discusses the mathematical 
models, concepts, advantages and disadvantages of using the different risk measures in portfolio 
optimization  namely the absolute deviation, minimax and lower partial moment.  Section 3 
discusses the empirical results employing the four optimization models mentioned using data of 
the Malaysia stock market. Section 4 concludes the paper.

Risk Measures

Variance

Markowitz (1952) proposed the mean-variance (MV) or Markowitz model by using variance as 
the measure of risk while mean return as the expected return. Markowitz was the pioneer of the 
modern portfolio theory.  The objective of MV model is to find the weight of assets that will 
minimize the portfolio variance at a level of required rate of return. This model is a quadratic 
programming model. The mathematical model is as follows:
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where ijσ is the covariance between assets i  and j , jx  is the amount invested in asset j , jr  
is the expected return of asset j per period, ρ  is a parameter representing the minimal rate of 
return required by an investor, 

,0M is the  total amount of  fund and ju is the  maximum amount 
of money which can be invested in asset j .
The Markowitz model is popular because of its simplicity. This model consists of two summary 
statistics which are mean and variance. Moreover, it is easy to construct the efficient frontier with 
the combination of return and risk. 
Nevertheless, the main disadvantage of Markowitz model is that it is very tedious to calculate  

                 covariance of assets to build this model. Furthermore, it is difficult to solve this 

quadratic programming model in large scale problem. Investor’s perception against risk and 
distribution of stock prices are also not symmetric around the mean. Commonly, the optimal 
solution consists of many stocks in small amounts. This will lead to large transaction costs to the 
investors (Konno and Yamazaki, 1991). 

Mean Absolute Deviation

Konno and Yamazaki (1991) proposed a new model using mean absolute deviation (MAD) as risk 
measure to overcome the weaknesses of variance. This model is equivalent to Markowitz model 
if the assets returns are multivariate normally distributed. They formulated the model as follows:
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where jR  is the return of asset j , jx  is the amount invested in asset j , ρ  is a parameter 
representing the minimal rate of return required by an investor, ,0M is the  total amount of fund 
and ju  is the  maximum amount of money which can be invested in asset j .
Konno and Yamazaki (1991) assume r jt be the realization of random variable jR  during period 
t (t = 1,2,...,T ), then 
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then (2.2) converts to the following model:
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Model (2.6) is equivalent to the following linear programming model:
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There is no need to calculate the covariance matrix. Furthermore, it is a linear program.  Solving a 
linear program is much easier and faster than solving a quadratic program. The optimal portfolio 
consists of at most 2T + 2 assets regardless of the size, n while Markowitz model may consist of 
n assets. T can be used to control the number of assets in the optimal portfolio. As such, MAD 
can solve a large scale portfolio optimization problem (Konno and Yamazaki, 1991). It is also less 
sensitive to outliers in the historical data (Byrne and Lee, 2004). 
On the other hand, ignoring the covariance matrix can cause greater estimation risk (Simaan, 
1997). Moreover, MAD penalizes not only the negative deviations but also the positive deviations. 
There is no difference between positive deviations and negative deviations. Nevertheless, investors 
prefer higher positive deviations and avoid lower negative deviations in portfolio return.

Minimax

Young (1998) proposed minimax (MM) model using minimum return as a measure of risk. The 
MM model is equivalent to MV model if the assets returns are multivariate normally distributed. 
MM model is a linear programming model. The minimax model is as follows:

max pM
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where jty is return on one dollar invested in security j  in time period t , jy  is average return on 
security j , jw  is portfolio allocation to security j , pM  is minimum return on portfolio, G is 
the minimum level of return, and W   is the total allocation.
Young (1998) defines pM  as follows:

pM = ∑
=

N

j
jtjt yw

1
min                            (2.9)

The model (2.8) is equivalent to the following model:
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The objective of model (2.10) is to maximize expected return subject to the portfolio return exceed 
minimum level of return, H.
Young (1998) shows that the minimax model has logical advantages if returns are non-normally 
distributed and when the investors have a strong absolute aversion to downside risk. In addition, 
it is a linear program so it can be solved faster than MV model. It can also accommodate more 
complex model such as including fixed transaction costs constraints. 
Because of its objective to minimize maximum loss, minimax is sensitive to outliers in the 
historical data. Furthermore, the minimax model may not be used if lack the historical data on the 
past returns or a probabilistic model for future returns (Young, 1998).

Lower Partial Moment

Lower Partial Moment (LPM) model is also known as downside risk model. Bawa (1975) and 
Fishburn (1977) generalize the lower partial moment model of degree α around Г is defined as:               

         (2.11)              

where dF(R) is the cumulative distribution function of the assets returns R, τ is the target return, 
α is the degree of the LPM. The target return can be zero, risk-free rate or expected return. The 
LPM model is a probability-weighted functions of deviations below some target return. α degree 
of lower partial moment can reflect investor utility towards risk with regard to below target return. 
According to Fishburn (1977),  α =1 suits a risk-neutral investor, risk-seeking (0 < α < 1) and risk 
averse behavior (α > 1) with respect to returns below the target Г. Semi-variance (SV) is a special 
case of the LPM when α is equal to 2 and τ is equal to E(R) (Markowtiz, 1959).  The semi-variance 
model is as follows (Konno et al., 2002):
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where jx  is the amount invested in asset j , jr  is the expected return of asset j per period, ρ  
is a parameter representing the minimal rate of return required by an investor, ,0M is the  total 
amount of  fund and ju is the  maximum amount of money which can be invested in asset j , tp  
is the probability that R  achieves tr .
Downside risk is better matches investors’ perception about risk than the variance because 
undesirable downside deviations are separated from desirable upside deviations (Markowitz, 1959). 
The LPM model penalizes only downside deviations.
Since individual downside risk measures cannot be aggregated to the portfolio risk like the way 
covariances are aggregated, the computation of portfolio risk is tedious (Grootveld and Hallebach 
, 1999). Besides that, LPM is sensitive to ouliers in the observations that are distant from target 
return (Byrne and Lee, 2004).

Empirical Results

Portfolios are developed employing the MV (2.1), MAD (2.7), MM (2.8) and SV (2.12) models in 
order to compare the portfolio compositions and performances of different optimal portfolios. 
The data consists of monthly returns of 54 stocks included in the Kuala Lumpur Composite 
Index (KLCI) from January 2004 until December 2007.  The minimum rate of return which is 
represented by ρ  and G is set to 1% in this study based on past researches. The probality, tp  is 

set to 
T
1

 for semi-variance model. The portfolio performance is calculated using the reward per

 risk equation (3.1):

   Portfolio Performance = mean return / risk (3.1)

Portfolio Performances

The Table 1 shows the summary statistics of the optimal portfolios generated.  

Table 1. Summary STaTiSTicS of opTimal porTfolioS

MV MAD MM SV

Mean Return 0.0100 0.0100 0.0205 0.0100

Risk 0.0181 0.0123 0.0131 0.0124

Performance 0.5525 0.8130
1.5649

0.8065

Notation : MV - Mean Variance, MAD - Mean Absolute Deviation,  MM - Minimax, SV - Semi-variance 

As shown in table 1, the mean return of MM model (0.0205) is the highest among the four models. 
The most risky portfolio is the MV model (0.0181) while the less risky portfolio is MAD model 
(0.0123). The MM model (1.5649) shows the highest performance whereas the MV model (0.5525) 
gives the lowest performance.  It is because the MM model is consistent with expected utility 
maximization principle with the implied utility function representing an extreme form of risk 
aversion (Young, 1998).  This result is also shown by Biglova et al. (2004) who have studied the 
performance of portfolio optimization models using nine assets in the German market. 
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Portfolio Compositions

Table 2 shows the optimal portfolio compositions of 4 different models. 

Table 2. percenTage of STockS in opTimal porTfolioS

Stock MV

(%)

MAD

(%)

MM

(%)

SV

(%)
Affin - - 9.94 -

BJToto - - 6.45 -

BAT 23.53 16.65 - 18.93
Carlsbg 6.06 4.00 6.52 5.31
CCM 3.95 5.79 - 5.68

DiGi 4.36 5.11 3.39 3.48

GAB 6.99 - - 1.52

Guoco - 0.06 - -

IOICorp 0.32 0.27 3.69 -

Kulim 2.66 0.39 - -

Litrak - - 5.16 -

Maybank 6.50 20.53 - 12.24

MMCCorp - - 7.61 -

Mulpha - - - 2.06

Bernas 3.19 - 15.71 2.75

PetGas 20.93 10.37 15.05 16.18

Pos -- 6.65 - -

PPB 0.05 1.17 6.09 1.22

Puncak 2.81 5.08 - -

RHBCap - - 2.72 6.25

Sarawak 3.22 7.63 - 7.59

Shang 1.75 1.28 - -

Shell 6.22 2.45 10.66 5.39

STAR - 0.04 - 1.18

TA 1.01 1.79 - -

TChong 0.16 - - -

Tenaga 0.49 4.19 - 7.22

UMW 5.82 6.54 - 1.19

YTL - - 7.02 1.82
Notation: MV - Mean Variance, MAD - Mean Absolute Deviation, MM - Minimax, SV - Semi-variance

Results indicate that the portfolios generated by the four risk measures do not differ very much. 
The difference is on the weight of stocks. According to Byrne and Lee (2004), the difference in 
weight is probably due to the non-normality displayed by data. The optimal asset allocations of 
MM model are least like the MV model while the asset allocations of MAD model are very similar 
to MV model. This result is also shown by Byrne and Lee (2004).
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Conclusion  

This paper discusses the theory of risk measures and compares the portfolio optimization models 
with different risk measures. The result shows that MM model outperforms the other models. As 
shown by the result of this study, the MV model does not perform as well as other models. As such, 
the MM model is a better choice for portfolio optimization compared to the other models for it 
ranks highest in terms of performance. This model is appropriate for investors who have a strong 
downside risk aversion. Future researches should include more alternative risk measures such as 
value at risk and conditional value at risk in portfolio optimization.
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